
Evaluation of Pear Tissue Sampling Protocols for Improving Nutrient Management

#### Chuck Ingels, Michelle Leinfelder-Miles, Patrick Brown, and Kitren Glozer

**Grower Cooperator** 

**Chris Frieders** 



## Current Leaf Sampling Recommendations in Calif.

- Non-bearing spur leaves in mid-summer
  - Leaves 3 months old, not strong nutrient sink
  - Static in nutrient mobilization
- Shoot or bearing spur leaves are a better indicator of nutrient status
  - Real-time status of nutrient mobilization
- Shoot leaves used throughout world
  - Also in Calif. before 1983

## Spring Sampling

- With spring sampling, can make in-season fert. adjustments based on crop load
  - Reduce vigor potential
  - Anticipate fruit quality problems from nutrient imbalances



## Leaf Sampling

- No benefit has ever been documented from N application when July leaf N > 2.2%
- Leaves not always indicative of fruit nutrient status, especially Ca
  - Fruit sampling may be more indicative



## Objectives

- Compare nutrient levels & ratios from different tissues and timings
- Determine if a better sampling protocol can improve nutrient management
- Lead-in to likely CDFA-FREP project
- Possibly revise UC recommendations for sampling & nutrient management

#### **Sampling**

(in 4 alternating drive rows)

• Late April (after early fruit drop)

Fruits and leaves

- July
  - Mid-shoot and non-bearing spur leaves
  - Fruit just before first pick
  - Soil



### **Three Bartlett Blocks**

- <u>Block A</u> Very productive, loam soil
- <u>Block F</u> Struggled for years, low production, drainage problems, loam soil
- <u>Block O</u> Organic transition, younger, highly uniform, higher density but one with lower production, clay soil
- No foliar nutrients applied



#### Soil Sampling Results

|       | NO <sub>3</sub> -N | Olsen-P | X-K | X-Ca | X-Mg | CEC  | OM  | рН  |
|-------|--------------------|---------|-----|------|------|------|-----|-----|
| Block | р                  | pm      |     | %    |      |      |     |     |
| Α     | 5.3                | 54.3    | 1.5 | 7.4  | 3.5  | 12.5 | 2.0 | 6.1 |
| F     | 10.7               | 40.9    | 1.8 | 17.6 | 6.2  | 26.7 | 3.5 | 6.9 |
| 0     | 19.8               | 46.5    | 1.3 | 21.7 | 9.5  | 33.0 | 4.9 | 6.6 |



#### Leaf Sampling Results – N & K

|              | Block | N (%) |    | K (%) |   |
|--------------|-------|-------|----|-------|---|
| <u>April</u> | А     | 2.86  | b  | 1.44  | а |
| Mid-Shoot    | F     | 3.14  | а  | 1.33  | b |
|              | 0     | 2.95  | b  | 147   | а |
| <u>July</u>  | А     | 2.43  | ab | 1.01  | b |
| Mid-Shoot    | F     | 2.52  | а  | 0.98  | b |
|              | 0     | 2.40  | b  | 1.26  | а |
| <u>July</u>  | А     | 1.98  | ns | 1.65  | b |
| N-B Spur     | F     | 1.95  | ns | 1.73  | b |
|              | 0     | 2.03  | ns | 2.16  | а |



### Fruit Sampling

• No relation:

-Leaf vs. fruit analyses

- Fruit analyses in April vs. July



### July Leaf Prediction Model Nonpareil Almond (Excel Spreadsheet)

- Sample all leaves of 5-8 non-fruiting spurs/tree 6 weeks after full bloom when reach full size (mid-April)
- Collect leaves from 18–28 trees /orchard, place in a single bag
  - EACH SAMPLED TREE AT LEAST 30 YARDS APART
  - 100 leaves/sample bag
- Send to lab, ask for a FULL NUTRIENT ANALYSIS
  - N, P, K, B, Ca, Zn, Cu, Fe, Mg, Mn, S



# July Leaf Prediction Model – Almond

Pear Leaf Samples 2014 (mid-shoot leaves)

| En | Enter the tissue nutrient values for leaves collected in spring |       |           |       |            |       |             |       |            |       |       |
|----|-----------------------------------------------------------------|-------|-----------|-------|------------|-------|-------------|-------|------------|-------|-------|
| 1  | N                                                               | Р     | К         | S     | В          | Ca    | Mg          | Zn    | Mn         | Fe    | Cu    |
| () | %)                                                              | (%)   | (%)       | (ppm) | (ppm)      | (%)   | (%)         | (ppm) | (ppm)      | (ppm) | (ppm) |
|    |                                                                 |       |           |       |            |       |             |       |            | _     |       |
|    |                                                                 |       | July % N  |       | Predicted  |       | July % N    |       | July % N   |       |       |
|    |                                                                 |       | Predicted |       | % of Trees |       | Actual      |       | Actual     |       |       |
|    |                                                                 | Block |           |       | above C.V. |       | (Mid-Shoot) |       | (N-F Spur) |       |       |
|    |                                                                 | А     | 2.41      |       | 94.7%      |       | 2.43        |       | 1.98       |       |       |
|    |                                                                 | F     | 2.45      |       | 97.1%      |       | 2.52        |       | 1.95       |       |       |
|    |                                                                 | 0     | 2.        | 44    | 96.6       | 96.6% |             | 2.40  |            | 2.03  |       |



## Conclusions

- Little to no relationship in nutrient values of leaves or fruit between April and July sampling dates
- Mid-shoot leaves higher in N, lower in K
- Little relationship between soil, leaf nutrients
- Strong fit of April leaf levels with predicted July leaf levels (shoot leaves)
- Would knowledge of July N levels in April affect preharvest N fertilization?



#### Thanks to Chris Frieders

#### for participating in this study

